# Probability and Statistics I 

STAT 3600 - Fall 2021

Le Chen<br>lzc0090@auburn.edu

Last updated on<br>July 4, 2021

## Auburn University <br> Auburn AL

## Chapter 4. Bivariate Distributions

# § 4.1 Bivariate Distributions of the Discrete Type 

§ 4.2 The Correlation Coefficient
§ 4.3 Conditional Distributions
§ 4.4 Bivariate Distributions of the Continuous Type
§ 4.5 The Bivariate Normal Distribution

## Chapter 4. Bivariate Distributions

§ 4.1 Bivariate Distributions of the Discrete Type
§ 4.2 The Correlation Coefficient
§ 4.3 Conditional Distributions
§ 4.4 Bivariate Distributions of the Continuous Type
§ 4.5 The Bivariate Normal Distribution

Definition 4.1-1 Let $X$ and $Y$ be two random variables defined on a discrete probability space. Let $S$ denote the corresponding two-dimensional space of $X$ and $Y$, the two random variables of the discrete type. The probability that $X=X$ and $Y=y$ is denoted by

$$
f(x, y)=\mathbb{P}(X=x, Y=y)
$$

The function $f(x, y)$ is called the joint probability mass function (joint pmf) of $X$ and $Y$ and has the following properties:
(a) $0 \leq f(x, y) \leq 1$.
(b) $\sum \sum_{(x, y) \in S} f(x, y)=1$.
(c) $\mathbb{P}[(X, Y) \in A]=\sum \sum_{(x, y) \in A} f(x, y)$, where $A$ is a subset of the space $S$.

Definition 4.1-2 The joint cdf of a discrete bivariate r.v. $(X, Y)$ is given by

$$
F_{X Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)=\sum_{x_{i} \leq x} \sum_{y_{i} \leq y} f\left(x_{i}, y_{i}\right) .
$$

Example 4.1-1 Consider an experiment of tossing a fair coin twice. Let $(X, Y)$ be a bivariate r.v., where $X$ is the number of heads that occurs in the two tosses and $Y$ is the number of tails that occurs in the two tosses.
(a) What is the range $R_{X}$ of $X$ ?

Example 4.1-1 Consider an experiment of tossing a fair coin twice. Let $(X, Y)$ be a bivariate r.v., where $X$ is the number of heads that occurs in the two tosses and $Y$ is the number of tails that occurs in the two tosses.
(b) What is the range $R_{Y}$ of $Y$ ?

Example 4.1-1 Consider an experiment of tossing a fair coin twice. Let $(X, Y)$ be a bivariate r.v., where $X$ is the number of heads that occurs in the two tosses and $Y$ is the number of tails that occurs in the two tosses.
(c) Find the range $R_{X Y}$ of $(X, Y)$.

Example 4.1-1 Consider an experiment of tossing a fair coin twice. Let $(X, Y)$ be a bivariate r.v., where $X$ is the number of heads that occurs in the two tosses and $Y$ is the number of tails that occurs in the two tosses.
(d) Find $\mathbb{P}(X=2, Y=0), P(X=0, Y=2)$ and $\mathbb{P}(X=1, Y=1)$.

Example 4.1-2 Roll a pair of unbiased dice. For each of the 36 sample points with probability $1 / 36$, let $X$ denote the smaller and $Y$ the larger outcome on the dice. For example, if the outcome is (3,2), then the observed values are $X=2, Y=3$. The event $\{X=2, Y=3\}$ could occur in one of two ways - $(3,2)$ or $(2,3)$ - so its probability is

$$
\frac{1}{36}+\frac{1}{36}=\frac{2}{36} .
$$

If the outcome is $(2,2)$, then the observed values are $X=2, Y=2$. Since the event $\{X=2, Y=2\}$ can occur in only one way, $\mathbb{P}(X=2, Y=2)=1 / 36$. The joint pmf of $X$ and $Y$ is given by the probabilities

$$
f(x, y)= \begin{cases}\frac{1}{36}, & \text { if } 1 \leq x=y \leq 6 \\ \frac{2}{36}, & \text { if } 1 \leq x<y \leq 6\end{cases}
$$

when $x$ and $y$ are integers.

Definition 4.1-3 Let $X$ and $Y$ have the joint probability mass function $f(x, y)$ with space $S$. The probability mass function of $X$ alone, which is called the marginal probability mass function of $X$, is defined by

$$
f_{1}(x)=f_{X}(x)=\sum_{y} f(x, y)=\mathbb{P}(X=x), \quad x \in S_{1}
$$

where the summation is taken over all possible $y$ values for each given $x$ in the $x$ space $S_{1}$. That is, the summation is over all $(x, y)$ in $S$ with a given $x$ value.

Similarly, the marginal probability mass function of $Y$ is defined by

$$
f_{2}(y)=f_{Y}(y)=\sum_{x} f(x, y)=\mathbb{P}(Y=y), \quad y \in S_{2}
$$

where the summation is taken over all possible $x$ values for each given $y$ in the $y$ space $S_{2}$.

Definition 4.1-4 The random variables $X$ and $Y$ are independent if and only if

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y), \quad \forall x \in S_{1}, \quad y \in S_{2}
$$

or equivalently,

$$
f(x, y)=f_{1}(x) f_{2}(y), \quad \forall x \in S_{1}, \quad y \in S_{2}
$$

Otherwise $X$ and $Y$ are said to be dependent.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(a) Find $f_{1}(x)$, the marginal pmf of $X$.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(b) Find $f_{2}(y)$, the marginal pmf of $Y$.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(c) Find $\mathbb{P}(X>Y)$.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(d) Find $\mathbb{P}(Y=2 X)$.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(e) Find $\mathbb{P}(X+Y=3)$.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(f) Find $\mathbb{P}(X \leq 3-Y)$.

Example 4.1-3 Let the joint pmf of $X$ and $Y$ be defined by

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

(a) Find $f_{1}(x)$, the marginal pmf of $X$.
(b) Find $f_{2}(y)$, the marginal pmf of $Y$.
(c) Find $\mathbb{P}(X>Y)$.
(d) Find $\mathbb{P}(Y=2 X)$.
(e) Find $\mathbb{P}(X+Y=3)$.
(f) Find $\mathbb{P}(X \leq 3-Y)$.
(g) Are $X$ and $Y$ independent or dependent? Why or why not?

Ans.
(a)
(b)
(c)
(d)
(e)
(f)
(g)

Example 4.1-4 The joint pmf of a bivariate r.v. $(X, Y)$ is given by

$$
f(x, y)= \begin{cases}k(2 x+y), & \text { if } x=1,2 ; y=1,2 \\ 0, & \text { otherwise } .\end{cases}
$$

where $k$ is a constant.
(a) Find the value of $k$.

Example 4.1-4 The joint pmf of a bivariate r.v. $(X, Y)$ is given by

$$
f(x, y)= \begin{cases}k(2 x+y), & \text { if } x=1,2 ; y=1,2 \\ 0, & \text { otherwise } .\end{cases}
$$

where $k$ is a constant.
(b) Find the marginal pmf's of $X$ and $Y$.

Example 4.1-4 The joint pmf of a bivariate r.v. $(X, Y)$ is given by

$$
f(x, y)= \begin{cases}k(2 x+y), & \text { if } x=1,2 ; y=1,2 \\ 0, & \text { otherwise } .\end{cases}
$$

where $k$ is a constant.
(c) Are $X$ and $Y$ independent?

Example 4.1-4 The joint pmf of a bivariate r.v. $(X, Y)$ is given by

$$
f(x, y)= \begin{cases}k(2 x+y), & \text { if } x=1,2 ; y=1,2 \\ 0, & \text { otherwise } .\end{cases}
$$

where $k$ is a constant.
(a) Find the value of $k$.
(b) Find the marginal pmf's of $X$ and $Y$.
(c) Are $X$ and $Y$ independent?

Ans.
(a)
(b)
(c)

Definition 4.1-5 If $X_{1}$ and $X_{2}$ are random variables of discrete type with the joint pmf $f\left(x_{1}, x_{2}\right)$ on the space $S$. If $u\left(X_{1}, X_{2}\right)$ is a function of these two random variables, then

$$
\mathbb{E}\left[u\left(X_{1}, X_{2}\right)\right]=\sum \sum_{\left(x_{1}, x_{2}\right) \in s} u\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right),
$$

if it exists, is called the mathematical expectation (or expected value) of $u\left(X_{1}, X_{2}\right)$.

Example 4.1-5 There are eight chips in a bowl: three marked ( 0,0 ), two marked $(1,0)$, two marked $(0,1)$, and one marked $(1,1)$. A player selects a chip at random and is given the sum of the coordinates in dollars. If $X_{1}$ and $X_{2}$ represent those two coordinates, respectively, their joint pmf is

$$
f\left(x_{1}, x_{2}\right)=\frac{3-x_{1}-x_{2}}{8}, \quad x_{1}=0,1 ; x_{2}=0,1
$$

Find the expected payoff.

$$
\text { Let } u\left(X_{1}, X_{2}\right)=\text { payoff }=\$\left(X_{1}+X_{2}\right) \text {. Thus, the expected payoff is }
$$

That is, the expected payoff is 75 cents.

Example 4.1-5 There are eight chips in a bowl: three marked ( 0,0 ), two marked $(1,0)$, two marked $(0,1)$, and one marked $(1,1)$. A player selects a chip at random and is given the sum of the coordinates in dollars. If $X_{1}$ and $X_{2}$ represent those two coordinates, respectively, their joint pmf is

$$
f\left(x_{1}, x_{2}\right)=\frac{3-x_{1}-x_{2}}{8}, \quad x_{1}=0,1 ; x_{2}=0,1
$$

Find the expected payoff.

Solution. Let $u\left(X_{1}, X_{2}\right)=$ payoff $=\$\left(X_{1}+X_{2}\right)$. Thus, the expected payoff is given by

$$
\begin{aligned}
E\left(u\left(X_{1}, X_{2}\right)\right)=\mathbb{E}\left(X_{1}+X_{2}\right) & =\sum_{x_{2}=0}^{1} \sum_{x_{1}=0}^{1}\left(x_{1}+x_{2}\right)\left(\frac{3-x_{1}-x_{2}}{8}\right) \\
& =(0)\left(\frac{3}{8}\right)+(1)\left(\frac{2}{8}\right)+(1)\left(\frac{2}{8}\right)+(2)\left(\frac{1}{8}\right) \\
& =\frac{3}{4} .
\end{aligned}
$$

That is, the expected payoff is 75 cents.

The following mathematical expectations, if they exist, have special names:
(a) If $u_{1}\left(X_{1}, X_{2}\right)=X_{i}$, then

$$
\mathbb{E}\left[u_{1}\left(X_{1}, X_{2}\right)\right]=\mathbb{E}\left(X_{i}\right)=\mu_{i}
$$

is called the mean of $X_{i}, i=1,2$.
(b) If $u_{2}\left(X_{1}, X_{2}\right)=\left(X_{i}-\mu_{i}\right)^{2}$, then

$$
\mathbb{E}\left[u_{2}\left(X_{1}, X_{2}\right)\right]=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)^{2}\right]=\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)
$$

is called the variance of $X_{i}, i=1,2$.

Remark 4.1-1 The mean $\mu_{i}$ and the variance $\sigma_{i}^{2}$ can be computed either from the joint pmf $f\left(x_{1}, x_{2}\right)$ or from the marginal $\operatorname{pmf} f_{i}\left(x_{i}\right), i=1,2$.

We now extend the binomial distribution to a trinomial distribution. Here we have three mutually exclusive and exhaustive ways for an experiment to terminate: perfect, "seconds," and defective. We repeat the experiment $n$ independent times, and the probabilities $p_{1}, p_{2}, p_{3}=1-p_{1}-p_{2}$ of perfect, seconds, and defective, respectively, remain the same from trial to trial. In the $n$ trials, let $X_{1}=$ number of perfect items, $X_{2}=$ number of seconds, and $X_{3}=n-X_{1}-X_{2}=$ number of defectives. If $X_{1}$ and $x_{2}$ are nonnegative integers such that $x_{1}+x_{2} \leq n$, then the probability of having $x_{1}$ perfect, $x_{2}$ seconds, and $n-x_{1}-x_{2}$ defectives, in that order, is

$$
p_{1}^{x_{1}} p_{2}^{x_{2}}\left(1-p_{1}-p_{2}\right)^{n-x_{1}-x_{2}} .
$$

However, if we want $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=X_{2}\right)$, then we must recognize that $X_{1}=X_{1}, X_{2}=x_{2}$ can be achieved in

$$
\binom{n}{x_{1}, x_{2}, n-x_{1}-x_{2}}=\frac{n!}{x_{1}!x_{2}!\left(n-x_{1}-x_{2}\right)!}
$$

different ways. Hence, the trinomial pmf is given by

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =P\left(x_{1}=x_{1}, x_{2}=x_{2}\right) \\
& =\frac{n!}{x_{1}!x_{2}!\left(n-x_{1}-x_{2}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}}\left(1-p_{1}-p_{2}\right)^{n-x_{1}-x_{2}}
\end{aligned}
$$

where $x_{1}$ and $x_{2}$ are nonnegative integers such that $x_{1}+x_{2} \leq n$. Without summing, we know that $X_{1}$ is $b\left(n, p_{1}\right)$ and $X_{2}$ is $b\left(n, p_{2}\right)$; thus, $X_{1}$ and $X_{2}$ are dependent, as the product of these marginal probability mass function

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability $6 / 10,3 / 10$, and $1 / 10$, respectively. Fifteen such items are selected at random from the production line. Let $X$ denote the number of good items, $Y$ the number of seconds, and $15-X-Y$ the number of defective items.
(a) Give the joint pmf of $X$ and $Y, f(x, y)$.

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability $6 / 10,3 / 10$, and $1 / 10$, respectively. Fifteen such items are selected at random from the production line. Let $X$ denote the number of good items, $Y$ the number of seconds, and $15-X-Y$ the number of defective items.
(b) Sketch the set of points for which $f(x, y)>0$. From the shape of this region, can $X$ and $Y$ be independent? Why or why not?

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability $6 / 10,3 / 10$, and $1 / 10$, respectively. Fifteen such items are selected at random from the production line. Let $X$ denote the number of good items, $Y$ the number of seconds, and $15-X-Y$ the number of defective items.
(c) Find $\mathbb{P}(X=10, Y=4)$.

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability $6 / 10,3 / 10$, and $1 / 10$, respectively. Fifteen such items are selected at random from the production line. Let $X$ denote the number of good items, $Y$ the number of seconds, and $15-X-Y$ the number of defective items.
(d) Give the marginal pmf of $X$.

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability $6 / 10,3 / 10$, and $1 / 10$, respectively. Fifteen such items are selected at random from the production line. Let $X$ denote the number of good items, $Y$ the number of seconds, and $15-X-Y$ the number of defective items.
(e) Find $\mathbb{P}(X \leq 11)$.

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability $6 / 10,3 / 10$, and $1 / 10$, respectively. Fifteen such items are selected at random from the production line. Let $X$ denote the number of good items, $Y$ the number of seconds, and $15-X-Y$ the number of defective items.
(a) Give the joint pmf of $X$ and $Y, f(x, y)$.
(b) Sketch the set of points for which $f(x, y)>0$. From the shape of this region, can $X$ and $Y$ be independent? Why or why not?
(c) Find $\mathbb{P}(X=10, Y=4)$.
(d) Give the marginal pmf of $X$.
(e) Find $\mathbb{P}(X \leq 11)$.

Ans.
(a) $f(x, y)=\frac{15!}{x!y!(15-x-y)!}(0.6)^{x}(0.3)^{y}(0.1)^{n-x-y}$
(b) no, because the space is not rectangular.
(c) 0.0735 .
(d) $X$ is $b(15,0.6)$.
(e) 0.9095 .

Exercises from textbook: 4.1-2, 4.1-3, 4.1-4,4.1-5, 4.1-6, 4.1-8,

